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engineering problems in the realm of nanoscale electronics and sensing.  We are capable of 
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1 Unveiling Molecular Adsorption Geometry in Cyclohexanethiolate
2 Self-Assembled Monolayers with Local Barrier Height Imaging
3 Pengshun Luo,*,†,‡ Norman L. Bemelmans,§ and Thomas P. Pearl*,‡

4
†School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

5
‡Department of Physics, and §Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-7518, United States

21 ’ INTRODUCTION

22 The growth of alkanethiolate self-assembled monolayers
23 (SAMs) on Au(111) surfaces is one of the most intensively
24 studied self-assembly systems in the last two decades.1�6

25 This is partially due to the easy and robust fabrication of
26 those SAMs as well as their broad potential applications in
27 molecular electronics, biosensors, nanofabrication, and sur-
28 face protection.3,4,7,8 Several ordered structures have been
29 observed as a function of surface coverage, temperature, and
30 length of the hydrocarbon chain.2,9,10 For the satura-
31 tion coverage of most alkanethiolate SAMs, the well-known
32 (

√
3 � √

3R30�) structure and its rectangular c(4 � 2)
33 superlattice have been routinely observed by scanning tunnel-
34 ing microscopy (STM) topographic imaging11�14 and low
35 energy electron diffraction (LEED).15,16 Unlike the surface
36 periodic structures, which can be well characterized by STM
37 and LEED, the underlying interface, where the sulfur head-
38 group is bonded to the Au surface, is far from being well under-
39 stood.17�20 It was assumed for a long time that the sulfur
40 headgroup would most likely adsorb on the high-symmetry
41 3-fold hollow-site for the (

√
3 � √

3R30�) phase, while the
42 c(4 � 2) structure was assumed to be due to adsorption on
43 different sites.21�25 However, photon-electron diffraction26

44 and near-incidence X-ray standing wave (NIXSW)27 measure-
45 ments indicate that the sulfur atoms most likely occupy the
46 atop sites. Recently, more experiments using NIXSW28 and
47 grazing incidence X-ray diffraction (GIXRD)29,30 as well as
48 STM imaging of individual short alkanethiolate molecules31�35

49 suggest the important role of Au adatoms, Au vacancies, and
50 the reconstruction of the outmost layer of Au(111) in the
51 alkanethiol adsorption. While NIXSW and GIXRD are spatially

52averaged techniques, a recent local barrier height (LBH) mea-
53surement was used to image the underlying sulfur head groups
54with molecular resolution by STM.36 In this case simultaneous
55imaging was performed of both the end group with topographic
56imaging and the sulfur headgroup with LBH imaging.
57In this study, we have employed LBH imaging to investigate
58SAMs formed from the adsorption of a conformationally flexible
59molecule, cyclohexanethiol (CHT), on Au(111). The CHT
60molecule has a carbon ring of six carbon atoms linked by single
61C�C bonds, and the thiol group is attached to one of the carbon
62atoms. Due to the flexible aliphatic ring, the molecule has several
63structural conformers.37 When they adsorb on the Au (111)
64surface, different ordered structures have been observed with
65ambient STM.38,39 Two main conformers, equatorial-chair and
66axial-chair, have been proposed to compose the ordered struc-
67tures. The CHT SAMs have also been successfully used to grow
68benzenethiol monolayers by displacement of CHT molecules
69with benzenthiol molecules.40 In this study, we have imaged
70CHT SAMs with a low temperature STM in ultrahigh vacuum.
71By quantitatively comparing topographic and LBH image fea-
72tures, we are able to unveil the underlying sulfur headgroup
73adsorption as well as the molecular azimuth tilt directions.

74’EXPERIMENTAL METHODS

75CHT SAMs were grown from solution deposition on to Au/
76Mica substrates, a 150 nm thick Au layer thermally evaporated on
77to a cleaved Mica sheet (Agilent Technologies). Prior to SAM
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7 ABSTRACT: The Au�S interface of thiol-based, self-assem-
8 bled monolayers grown on Au(111) surfaces is far less under-
9 stood than it should be. Local barrier height imaging, which
10 has recently resolved work function variations in the buried
11 interface of alkanethiolate monolayers, is now used to study self-
12 assembled monolayers on Au(111) formed by cyclohexa-
13 nethiol, a molecule with a flexible aliphatic ring structure.
14 Multiple ordered phases are observed, consistent with its
15 conformational flexibility which makes multiple interadsorbate
16 interactions possible. In one particular phase, the appearance of
17 two readily distinguishable features in local barrier height images implies at least two types of adsorption sites. Correlation of
18 simultaneously acquired topographic and local barrier height data allows for a preliminary structural model that accounts for
19 adsorption geometry.
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78 growth, the Au(111) surface was prepared with hydrogen flame-
79 annealing of the Au layer. The substrate was then immersed in a
80 1 mM CHT (Sigma Aldrich, purity 97%) solution in 200 proof
81 ethanol immediately after annealing. After 26.5 h deposition in
82 solution, the substrate was then gently rinsed with ethanol and
83 then dried with dry nitrogen gas. The substrate with CHT SAMs
84 was then transferred to a custom-made low temperature scanning
85 tunneling microscope41 housed in an ultrahigh vacuum system
86 with a base pressure below 10�10 Torr. All of the measurements
87 reported in this paper have been done at 83 K. Image processing
88 was partially performed withWSxM, a free application developed
89 by Nanotec Electronica S.L.42

90 LBH images were simultaneously recorded with topographic
91 images. During imaging, a small AC modulation voltage (1 kHz,
92 Vrms = 4�10mV) was applied to the zmotion (orthogonal to the
93 surface) of the tip, which results in a (0.024�0.060 nm) ampli-
94 tude oscillation of the tip�sample distance. The resultant
95 modulated tunneling current signal is fed into a lock-in-amplifier
96 that is then used tomeasure the first harmonic of the current with
97 respect to distance (z) by phase sensitive detection. According to
98 the electronic tunneling theory, dI/dz is approximately given by

dI
dz

≈� 2
ffiffiffiffiffiffi
2m

p

p

ffiffiffiffiffi
ϕ0

p � I, ϕ0 ¼ ϕt þ ϕs
2

ð1Þ

99 where ϕt is the work function of the tip, ϕs is the local work
100 function of the sample, and ϕ0 is the effective LBH of the
101 tunneling junction. In constant current mode, dI/dz is directly
102 proportional to the square root of effective LBH, so the LBH

103image in this paper is referred to as the dI/dz image in constant
104current mode.

105’RESULTS AND DISCUSSION

106Multiple phases are observed for the CHT SAM as shown in a
107typical large scale image of the SAM (see Figure 1 F1a). In contrast
108to long chain alkanethiolate SAMs, a large portion of the CHT
109monolayer is disordered (region IV). This is most likely due to its
110flexible aliphatic ring structure and relatively short molecular
111length. Inside the disordered area, we observe vacancy islands
112resulting from sulfur driven abstraction of Au surface atoms,
113similar to those that occur in other thiol anchored SAMs on Au.
114In addition to the disordered regions, three ordered structures
115are also observed. Phases I and II are the two ordered structures
116that occur most readily. Both phases exhibit zigzag molecular
117rows. Most molecules of phase I appear darker (lower height)
118than those of phase II in topographic images (Figure 1a�d). In
119phase II, as shown in Figure 1d, the molecules are packed in
120alternatingly bright and dark zigzag molecular rows. The dark
121area in phase I is separated by the bright zigzag molecular rows
122which have the same contrast in topography and ordering as the
123bright rows in phase II. Apart from these two phases, in a few
124surface areas, we are able to observe the third phase as shown in
125Figure 1, panels b and e. In the third phase, the molecules form a
126distorted monoclinic lattice and individual molecules in this
127phase occasionally exhibit different topographic contrast.
128The topographic image is a measure of the convolution
129of surface crystal structure and local density of electronic states.

Figure 1. STM topographic images of CHT SAMon Au (111). (a) A large scale image (75.6� 75.6 nm2) shows vacancy islands (black holes), ordered
structures (I, II, and III), and disordered molecular regions (IV). (b) 22.7 � 22.7 nm2 region with three ordered phases I, II, and III and disordered
molecular layer (IV) presented. (c�e): High resolution images of phase I (c), II (d), and III (e) with image sizes: 11.3 � 11.3 (c) and 5.7 � 5.7 nm2

(d and e). Image acquisition conditions: Vsample = 1.5 V, It = 10 (a) and 8 pA (b�e).
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130 In most cases, when the spatial variation of surface electronic
131 structure, i.e., local density of states, is uniform, the topographic
132 image represents the surface morphology. In other words, we
133 usually image the top part, or exposed surface, of the molecular
134 monolayer by topographic imaging. On the other hand, LBH
135 imaging is sensitive to variations in the LBH of the tunneling
136 junction as a function of position. When the sulfur headgroup
137 adsorbs on the Au(111) surface, the formation of the sulfur-Au
138 covalent bond modifies the surface local work function and the
139 local tunneling barrier height distinctly.43 This gives us an
140 opportunity to resolve the sulfur atom position at the S�Au
141 interface relative to the position of the exposed molecular
142 positions in a fashion similar to what was reported in the
143 literature.36

144 Both STM topographic images and LBH images were re-
145 corded for the three ordered phases. Figure 2F2 shows that the LBH

146images appear quite different from the topographic images. A
147common characteristic of both phases I and II is that some
148features are much brighter, i.e., higher LBH intensity, than others.
149The different brightness is most likely due to inequivalent
150adsorption sites of the sulfur headgroup since the charge transfer
151varies as a function of sulfur headgroup adsorption site.36,43

152Furthermore, the features in the LBH image are elliptical in shape
153rather than circular as seen in the topographic images for the
154same feature. It is also interesting to note that the molecular row
155with the brightest features in phase I has the same appearance as
156that of phase II in the LBH images, which demonstrates again
157that the same ordering of the bright molecular rows exists
158between phases I and II. In phase III, the features form separated
159rows along the line direction as marked in Figure 2(f). Due to the
160well observed periodicity of phase II, we will focus our following
161discussion on this phase.
162From analysis of both the topographic images and LBH
163images after drift correction, the 2D lattice constant of phase II
164is determined to be a = 1.47( 0.02 nm and b = 1.03( 0.02 nm.
165The angle between the vector a and b is γ = 87 ( 1� (see
166Figure 3 F3). The drift rate is assumed to be constant and calculated
167between two successively recorded images. The unit cell for
168phase II corresponds to a 2

√
7 � √

13R19.1� structure with
169respect to the unreconstructed Au(111) surface (see Figure 3c).
170The local maxima in the LBH image are searched by the
171Matlab program used in ref 36. We name the brightest features
172M0, and the other three features in the unit cell M1, M2, M3 as
173indicated in Figure 3a. The coordinates (xa, xb in Table 1 T1) of
174the local maxima ofM0,M1,M2, andM3 are then calculated in the
175unit cell coordinate system. Assuming the M0 locations are the
176sulfur headgroup adsorbed on the atop site of Au(111) surface,
177we are able to reproduce the features observed in the LBH image
178on an unreconstructed Au(111) surface. As shown in Figure 3b,
179all of the features (M1, M2, M3) other than M0 are located near
180the bridge sites. This is consistent with the brightness differences
181between M0 and M1, M2, M3. We also considered other
182possibilities such as M0 adsorbing on the hcp, fcc hollow sites
183or the bridges sites, and then tried to reproduce M1, M2, M3 on
184the Au (111) surface lattice. None of these possibilities is
185consistent with the LBH image as well as M0 adsorbed on the
186atop site.
187With the adsorption site determined, the molecular tilt direc-
188tion (azimuth angle) can be calculated by quantitatively compar-
189ing the topographic and the LBH images. With the same Matlab
190program, the local maxima in the topographic image are deter-
191mined and marked as “*” in both the topographic image and the
192LBH image in Figure 4 F4. Since the length of the long axis of the
193molecule is much shorter than the alkanethiol molecules used in
194ref 36, we need only to consider the possibility that the nearest

Figure 2. STM topographic images (a�c) and simultaneously recorded
LBH images (d�f) for phases I, II, and III. Image areas: 5.7 � 5.7 nm2.
Image acquisition conditions: Vsample = 1.5 V, It = 8 pA. Modulation
voltages used for the dI/dzmeasurements:Vrms = 8mV (a and d),Vrms =
4 mV (b, c, e, and f), fmod = 1 kHz.

Figure 3. (a) LBH image of phase II. The “*” indicate the local maxima.
M1, M2, and M3 indicate the three bright features other than the
brightest one (M0) in a unit cell. (b) The adsorption sites of the CHT
molecules on the Au (111) are presented with information derived from
the experimental data. (c) Top view of the preliminary structural model
of phase II showing the adsorption sites and adsorbate azimuth orienta-
tion. (d) Side view of the preliminary structural model of phase II
showing the alternating higher and lower molecular rows.

Table 1. Lists of the local maxima position (xa and xb) in the
LBH image, the distance (d) between the local maxima in
topographic image and LBH image, and molecular tilt
azimuth angle (R) referred to the unit cell vector aa

xa xb d (nm) R (o)

M0 0 0 0.39 209

M1 �0.13 0.38 0.29 192

M2 0.38 0.52 0.31 188

M3 0.47 0.14 0.25 218
a (xa, xb) is in relation to the unit cell vectors.
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195 topographic maxima around the LBH maxima belong to the
196 same molecule. With this in mind, the molecular tilt direction is
197 determined as indicated by the arrows in Figure 4 which point
198 from the local LBH maxima to the nearest topographic maxima,
199 and the azimuth angle (R) refers to the vector a as listed in
200 Table 1. The distance between the topographic maxima and the
201 LBH maxima are calculated and listed in Table 1 as well. Further
202 examination of the shape of the features in the LBH image finds
203 that the long axis of the elliptical shapes is along the tilt direction
204 for M0, M1, and M2, but not for M3. It should be noted that
205 according to the molecular azimuth angle measured with respect
206 to the Au(111) Æ110æ direction in ref 36, the long axis of the
207 elliptical features in the LBH image is approximately along the
208 molecular tilt direction for the alkanethiolate SAMs too (Figure
209 3b in ref 36). The reason for this needs further theoretical
210 calculation, but we may propose the following reasonable
211 explanation. As the charge transfer most likely occurs along the
212 C�S�Au bonds, we expect that the LBH modification occurs
213 not only on the sulfur atom but also along the C�S�Au bonds.
214 For M0, M1, M2, the C�S�Au bonds tilt along the molecular tilt
215 direction while for M3 the C�S�Au bonds might be nearly
216 standing up. This might explain why M3 appears smaller in LBH
217 image compared to other molecules in the unit cell. Due to this
218 effect, we should bear in our mind that the real sulfur anchoring
219 sites might be offset from the local maxima of the LBH features.
220 Based on the above analysis, a preliminary structural model
221 of phase II can be proposed as shown in Figure 3, panels c
222 (top view) and d (side view). In this model, we reproduce the
223 sulfur adsorption sites on an unreconstructed Au(111) surface
224 according to the experimental observations, which means that
225 one molecule adsorbs on the atop site and the other three
226 molecules adsorb on the near bridge sites. The molecular tilt
227 direction (azimuth angle) is also derived from the experimental
228 data, while the polar angle of the molecular tilt direction needs to
229 be further optimized by a structural relaxation calculation. The
230 molecular aliphatic ring plane cannot determined from the
231 experimental data either, but is assumed to be vertical with
232 respect to the Au(111) surface for the higher molecular rows as a
233 start for the structural relaxation. In order to reproduce the
234 alternative higher and lower molecular rows appearing in the
235 topographic images, the aliphatic ring plane at the lower row
236 should be rotated around the long axis comparing to the higher
237 rows (see Figure 3, panels c and d).

238’CONCLUSIONS

239In summary, we have investigated CHT SAMs grown from
240solution on Au(111) with a low temperature STM in ultrahigh
241vacuum. Multiple structural phases of the monolayer have been
242observed for this conformationally flexible molecule. LBH ima-
243ging has been applied to reveal the underlying adsorption
244arrangement. Based on the simultaneous topographic and the
245LBH imaging, molecular adsorption sites as well as the azimuth
246angles have been determined. Although we are not able to give a
247final structural model based on the experimental data, we
248propose a preliminary model which would be a good start for
249further theoretical structure optimization. Our experimental
250result demonstrates again the capability of the LBH imaging,
251particularly in unveiling the adsorption sites in the complex
252self-assembled monolayers such as CHT SAMs.
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